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NOMENC LATURE .

The terminology is in general agreement with Reference 9. Unless

otherwise noted, all of the following quantities are nondimensionalized in
terms of one-half the fluid density and appropriate powers of the velocity
of the origin and the body length. Following this table is a short summary
of derivations for representative dimensionless forms. The numbers in
brackets refer to applicable formulas in the text.

A, A*

x = = © = [= 5 U"O

-

Cross-sectional area of wake at stern
Effective area of body as an airfoil
Effective area of tail surface

Geometric aspect ratio of tail fin, including intersected
portion of body

Effective aspect ratio of body alone

Effective aspect ratio of tail fin [22]

Actual semi-span of tail fin

Distance of tip of tail fin from bod&

Effective semi-span of tail fin (21]

Radius or'gyration about y axis through center of gravity

Drag coefficient of tail fin, baséd on plan-form area of tail
Lift coefficlent of body alone, based on effective area of body
Lift coefficient of tail fin, based on plan-form area of tail:

Surface area coefficient of body slone, based on circumferential
area of circumscribing cylinder

Drag coefficient of body alone, based on surface area of body
Drag force

Diameter of body

Tail 1ift factor [12]

Downwash factor for restilinear motion, [13]

Boundary-layer shape parameter, [68)

Downwash factor for rotary motion, (14]

Moment of inertia about y axis through center of gravity

Longitudinal virtual-mass coefficient
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Transverse virtual-mass cceflficient

Virtual moment of inertia relative to y axis
Lift force, normal to direction of motion
Static 1ift derivative

Length ¢f body (dimensional) .0
Moment about y axis through center of gravity

Mass of displaced fluid s

Rotary-moment derivative, derivative of moment with respect to
angular velocity

_Rotary-momenc céerivative for hull alone
Rotary-moment derivative for tail fin
Derivative of moment with respect to angular acceleration

Static-moment cderivative, derivative of moment with respect to
velcelity in z direction

Static-moment derivative for hull alone

Derivative of moment with respect tc acceleration in z direction

q Angular velocity about center cf gravity
R Radius of hull at fin
T, Nose-radius coefficient
T Tall-radius coefficient
U Velocity of center of gravity relative to fluid (dimensional) .
W Vélocity in z direction, normal velocity
X Absolute va.ue of axial distance of center of buoyancy from bow .
Xq Ab.:clu:e value of distance of point of application of 1lift force
from center of gravity .
Xq Absolute value of distance of center of gravity from stern ’
Xy Absolute value of distance from aerodynamic center of fin to S
center of gravity :
Z Normal force, positive downwards
Zq Rotary normal-{orce derivative
Zqo Rotary normal-forc? derivative for hull alone
Zc-l Derivatj..ve of normal force with respect to angular acceleration
A ———




Z Static normal-force derivative, derivative of force with respect
to velocity in z direction

Static normal-force d?rivative for hull alone

zwo
Zwt Static normal derivative for tail fin
Zﬁ Derivative of normal force with respect to acceleration in
z direction

a Angle of attack in radians
B Effective angle of attack on the tail fins

Ratio of downwash angle at fin to downwash angle at center of

body l1lift

4, A factor, (U6]
4, A factor, [50]
& Displacement thickness of boundary layer at tail, [65]
€ Angle of downwash, in radians
¢ Ratio of 1ift coefficient according to Weinig's theory to lift
! coefficient according to lifting-line theory ,
¢ Wake factof. correcting for velocity retardation over tail fin
4 due to effect of hull boundary layer, {73)
6 Momentum thickness of boundary layer at tail, [66])°
A Length-diameter ratio of body
; An error factor, [u8)
:m Axial distance of maximum section, body lengths from bow
) Mass density of fluid.(dimensional)
o Directional-stability index, a root of the characteristic equation

of the linearized equations of motion

REPRESENTATIVE NONDIMENSIONAL FORMS
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ABSTRACT

Various methods of estima‘tlng the forces and moments on an elongated body of
revolution at a small angle of attack in uniform motion or with a small angular veloclty'
in rotary motion are considered. After 2 review and critique of the literature, a new
method for estimating the stability derivatives is proposed, the principal novel feature
being the incorporation of a downwash correction due to lift on the hull in determining
the lift on a tail surface.

The values of the stability derivatives given by the various sets of formulas
considered are compared with the results of measurement, both with a 3-component
dynamometer and with an oscillator, on two bodies of revolution, with and without
tail surfaces.

Two applications of the formulas for the stability derivatives are made. In
one they are used to determine the size of tail surfaces necessary in order to obtain
a prescribed value of the stability index; in the other they are applied to derive simple
expressions and curves for the errors in the stability Index due to percentage errors
in the stability derivatives.

INTRODUCTION -

In the era from about 1920 to 1935, the developmeni of the airship
stimulated considerable research in the aerodynamics of elongated bodies. 1In
the main the results of this work have been thoroughly reviewed by Munk,'
and Arnstein and Klemperer.® Unfortunately, as‘a consequence of the airship
disasters of the 1930's, airship construction ceased and this stimulus for
research was lost.

During the past war the design of numerous weapons and devices
taxed the existing theory of the forces and moments on elongated bodies of
revolution and clearly indicated the necessity for additional work in this
field. The new ideas and procedures developed by the Germans in connection
with their investigations of the stability and motions of submarines and tor-
pedoes have been reported principally by Albring.®:*:% In this country a
procedure for estimating the hydrodynamic characteristics of a body of revo-
lution, equipped with tail fins, when its bare hull characteristics are known
or assumed, was developed on the basis of Freeman's AKRON data® by one of the
present authors and employed in the design cf underwater bodies. The presen-
tation of a refined version of this procedure is one of the purposes of this

1References are listed on page 35.



report.

In the postwar pericd experimental data on the hydrodynamic charac-
teristics of elongated bodies of revolution have been accumulated 2t ‘the
Experimental Towing Tank of the Stevens Institute of Technology and at the
Taylor Model Basin; concurrently the work of Munk' on the inviscid flow about
such bcdies has been extended by Laitone.” Also, within the last decade,

significant advances have been made in boundary-layer theory, especially on E
the growth of the boundary layer along a body in the presence of a pressure
gradient. These are reviewed in a recent report by Granville.? S
On the whole, however, it appears that the principal aim of this
research—to find a theory for the flow about an elongated body moving through .

a viscous fluild which 1s in accord with the observed flow and which predicts
forces and moments in agreement with experiment—is far from attained.
Nevertheless, several important principles have been estzblished on the basis
of which 1t appears possible to make rational estimates of these forces and
moments.

It !s proposed in the present report to review some of these prin-
c¢iples and procedures, tc derive the aforementioned new procedure, znd con-
versely tTO show how 17T may be applied to determine the size of appendages
necessary tc oblain a desired vaiue for the dynamic-stability index. As an
interesting applicacion cf one of the simpler sets of predicticn formulas,
an zppendix on the sensitivity of the value of the stabllity. index to errors
in the values of the stabllity derivatlives s also included.

THE FRAME OF REFERENCE

The longltudinal, transverse and normal axes x, y, and z, respec-
tively, are assumed to rotate with the body, with the origin of the coordi-
rate axes at the center of gravity. Positive directions are x forward, y to
starboard and z downwzard, perpendicular to x and y. The respective forces
X, ¥, and Z and velocities u, v, and w sre directed accordingly. For the
purpose of this analysis motlion will be assumed confined to the xz plane,
with angle of attack a, angular velocity q and moment M about the y axis
assumed positive if directing the positive z axis to rotate into the direc-
tion of the positive x axis.

The foregoing conventions are in accordance with the nomenclature

of SNAME Bulletin 1-5,° which will also be employed in the following.




THE CHARACTERISTIC EQUATION; THE STABILITY DERIVATIVES

Neglecting metécen.tric s‘tability and surface effects, the charac-
teristic equation of the linearized differential equations of .motion in the.
vertical plane, in dimensionless form, may te written as'®

[(Zﬁ-m)(Mé-I) - mg;,zd]az + [Zw(Mq-I) + Mq(Zv-:-m) - zdr% - M,;,(m-rzq)]a

+ [szq = m(mzq)l =0 (1)

In this equation the primes usually employed to distinguish between dimen-
sional and nondimensional quantities’ have been omitted, since all quantities
are dimensionless. In (1], m is the mass of the body, I its moment of iner-
tia about the y-axis through the center of gravity; the dot over a variable
denotes the. time derivative of the variable, and a variable appearing as a
subscript to Z or M denotes partial differentiation with respect to that sub-
script. Quantities are nondimensionalized by dividing by appropriate powers
of the basic quantities !, U, and %p, where | is the length of the body, U
is 1ts speed of advance, and » 1s the mass density of the fluid.

The characteristic equation is a quadratic from which the stability
indices o may be determined when the other quantities are known. It will be
shown that it may also be used to estimate the size of the stabilizing sur-
faces when a desired value of a stability index s prescribed. .

When numerical values are considered, many of the terms in [1] are
found to be small in comparisorn with others. It is customary to assume
approximate simplifying values for these small terms. For a nearly neutrally-
buoyant body these assumptions are the following:

Z'-‘ = - kzm, Zd. = 0, M, =0 M‘i = - k'I (2]

where k2 and k' are coefficients of additional laterel mass and of moment of
inertia about a transverse axis.' The determination of the remaining sta-
bility derivatives, Zw' m, Zq, Mq, 1s the objective of various experimental
techniques and theoretical analyses. Some of the methods for estimating
these derivatives will now be discussed.

REVIEW OF THEORY FOR STABILITY DERIVATIVES FOR A BODY
OF REVOLUTION WITHOUT APPENDAGES
LAMB'S ANALYSIS

It is instructive first to examine the values cf these derivatives
obtained from potential-flow theory. From Chapter VI of Lamb's Hydrodynamics''
the following values may be derived




(a) Zwl 0

(b)) M, = (k_ -k )n
W 2 1 (3]
(e) Zq =km .

(d) M =0

where k 1s the coefficient of additional axial mass.'

The first of Equations [3] is known to be in serious error. Con-
cerning this Arnstein and Klemperer® remark: "When an airship is propelled
at an angle of attack, 1ift forces are created in a similar manner as by the
wing of an airplane, It is true that the airship's shape as a wing is very
poor and its aspect ratio extremely small; but the size of the exposed sur-
faces 1s so great that tremendous aerodynamic force components at right
angles to the flight path can be evoked." This discrepancy is attributable
to viscous effects which contribute—to the forces and moments acting on the
body—not cnly the integrated effects of the snearing stresses, but also, by
the formaticn of a boundary layer along the body and a wake, greatly modify
the pressure distribution, especially toward the after part of the body.

This discrepancy between the potentizl-flow pressure distributions and the
measured values on a model of the USS AKRON is graphically shown by Allen.}?

The values for M_ in (3] (known as Munk's formula}, are generally
about 15 parcent higher than the measured values. This discrepancy is also
attributagld to the viscosity of the fluld which, by diminishing the downward
force acting near the stern, decreases the moment and gives a resultant
upward rorée.

The value for Zq in [3] corresponds to an outward (centrifugal)
force exerted by the fluid on a body in rotary motion. This force is cdue to
the uniform rate of change of direction of the longitudinal momentum imparted
to the fluid by a body moving in a circular path. Since it 1is known that
virtuagl-mass effects are only slightly influenced by viscosity, it is reascn-
able to assume that the term klm will contribute to the value of Zq in addi-
tion to any effects of viscosity. :

The 1ittle available data for Mq indicates that the last of Equa-
tions (3] is very nearly correct for a viscous fluid also. The contribution
of viscosity to this and the other derivatives will be.d!scussed more fully
in a subsequent section.



LAITONE'S ANALYSIS

An 1nterestihg modification of the potential—flow theory, in which
it was attempted to take into account the effect of viscosity by assuming
that the body effectively had an area of section at the stern equal to the
width of its wake, has been carried through by Laitone.?’ On the assumption
that the center of gravity and buoyancy coincide, his results may be expressed
as follows:

(a) 2 = - 24,

w
(b) M, =m+x2,
[4)
(c) Zq = k‘m + xszw,
() Mq - x:zw

where A 1s the area of section of the wake at the stern, nondimensionalized
in terms of the body length, and Xg is the distance of the center of gravity
from the stern similarly nondimensionalized. Since the diameter of the wake
is unknown, (4] does not give an estimate for Zw, but valid expressions for
the other derivatives in terms of Zw would be most useful.

Laitone's formulas are based on a section-element theory which
assumes that at each section the fluid has the lateral momentum corresponding
to the two-dimensional virtual mass of the section. No account is taken of
the 1ift and downwash effects of the vortex system which Harrington,'®
Ehgelhardt,’'* and Albring® have shown to exist in the flow field of a yawed
body. Results from the formulas are compared with experiment in a subsequent
section.

ALBRING 'S ANALYSIS

In References 3 and 4 Albring has derived formulas for the stability
derivatives on the basis of the assumption that the 1ift force may be consi-
dered to act at the same point near the stern on the axis of the body for
both straight and rotary motion, whether or not the body is equipped with
fins. Furthermore, he assumes, in Reference 3, that the 1lift force on the
body in rotary motion is equal to that fqr motion in a strZight line at an
angle of attack equal to the local angle of attack in rotary motion at the
point of application of the lift force. In Reference 4 the latter assumption
is modified by reducing the force thus obtained by a constant amount so as
to obtain zero force on a hull due to rotary motion.




Albring's results, applied to a hull without fins, are as follows:

(a) L, assumed or measured,

() N,

(kz-k1 m - xoL,

(c’) Zq = - x L, (from Reference 3), (5]
or g
(cz) Zq = 0 (according to Reference 4),
2 e 2 :
(d) My x 2L,

where L is the nondimensionalized force normal to the direction of incident
flow and Xq is the nondimensionalized distance of the assumed point of appli-
cation of the 1ift force from the center of gravity. Zw is related to Lh by
the equation

Z, = - (L, + D) 16

where D !s the nondimensicnalized drag of the body. It is.implied by Albring
that X4 is apprecximately half the prismatic coefficient of the body.

Since Reference & was written after 3, it must be presumed that
Albring preferred the value or_Zq in [5c2} derived from Reference 4. The
values of the derivatives given by the various formulas wiil be compared
with experiment in a subsequent secticn. 1

REVIZW. OF THEORY CF STABILITY DERIVATIVES FOR A

- 4 BODY OF REVOLUTION WITH TAIL SURFACES
POTENTIAL FLOW FORMULAS

In estimating the forces and moments on an elongated body of revo-
lution equipped with tall surfaces it has been customary to assume that there
is no interference between the body and these surfaces, so that their separate
elffects are additive. [et Zwt be the contribution of the tall surfaces to
2, and let x, be the distance (nondimensionalized) between the center of
gravity and the center of pressure on the tail. Then, the addition of the - K
tall-surface effects to the values for the body alone gives

(a) 2, =2, + 2,

(b) M, = M+ %2

(e) Zq = Zqo + xtzwt

= 2z
(a) Mq Mqo + X, Tyt

(7]




Here Z is to be estimated from the airfoil theory of low-aspect-ratio air- '
foils, and the zero subscript denotes values (such as Equations (4] and [5])
for the body of revolution without tail surfaces.

The terms x,Z and xtazw in Equations [7c] and [7d] are obtained by
the well-known procedure of computing the force on a tail surface, when the
(nondimensionalized) angular velocity of the body is q, from the mean lateral
velocity of the surface, w = qx, . This gives Zwtxtq and Zwtxtzq for the
(nondimensionalized) force on the surface and the moment of this force about
the center of gravity. The derivative of this force and moment with respect
to q then gives the terms in Equations [7c¢c] and [7d]. _

Worthy of special note are the extremely simple approximations
obtained for an elongated body by setting k‘ = 0, k2 =1, and x, = %-1n (3]
and substituting into [7]: '

(a) 2 =2

(b) M, =m+%2Z,

(¢) 2, =%2 5]
(@) M =%z, ..

ALBRING'S ANALYSIS

3 As was stated in the discussion of the body without fins, Albring
assumed that the point of application of the 1lift force was unaltered by the
addition of fins. Here also there are two formulas for Zq. one obtained from
Reference 3, and a "corrected" one obtained from Reference 4. His results
for a hull with fins may be expressed as follows:

(a) L, assumed or measured,

(b) M, = (kz-ki)m - x L,
(c]) 2, = - XLy (from Reference 3), ' (9]

(02) ZRCLE x, (L, - L, ) (from Reference 4)

(d) Mq - - xosz

Here Lwo denotes the lift rate for the bare hull as distinguished from Lw'
the 1ift rate for the hull with fins. x  1is the nondimensionalized distance
of the assumed point of application of the lift force from the center of
gravity, implied by Albring to be half the prismatic coefficient of the body.

or



Equation 6], 2 = - (L,+D), !s st1ll applicable, although the terms now
refer to the body with fins., e

Results from aquations [6] will bpe compared with experiment in a
subsequent section. i

DERIVATION OF NEW FORMULAS FOR STABILITY DERIVATIVES

Several investigators®:'3,'* have observed that at moderate angles
of attack there is a vortex system in the wake of an elongated body of revo-
lution analogous to that of an airfcil of low aspect ratio. For the purpose
of developing an approximate theory it will be assumed that, for small angles
also, & part of the 1ift developed by the body is attributable to its action
as a symmetrical airfoll of low aspect ratio.

At small angles of attack a, the 1lift of a body of revolution is
expressible in the form L = Ca + Cza’. It is well known that a very long
eylinder at an angle of attack is subject to a normal force proportional to
sin?a, (Reference 15), an effect which may be explained by assuming that thne
longitudinal and normal components cf the incident flow act incependently.
It appears reascnable to suppose that this effect accounts for the quadratic
term at small angles of attack. However, since in the present work we are
concerned only with the estimation c¢f the stability derivatives, to which
the quadratic term maxes no contribution, we will not consider this term any
further.

The original assumption can now be stated more precisely, that, at

small angles, that part of the lift which varies linearly with the angle of
gttack may be treated by the methods of airfoil thecry.

According to the theory of the lifting line,'® as modified by
Weinig's cascade theory,'” at each point downstream from the hull center of
14ft there is a downwash angle ¢, a function of position, determined by the
14t coefficlent and the effective aspect ratio of the hull. Thus the resul-
tant angle of attack at a point is

B=a-c¢ ‘ {10] o

The analytical determination of the load distribution and 1ift on o oo
a tall surface is now seen to be a very difficult problem. Not only is the
tall immersed in a thick boundary layer and subject to'its velocity gradients,
but also the proximity of the tail to the hull center of 1ift,'?,'®implies
varlations of the downwash angle along the chord and span of the tail surface.
Nevertheless, an approximate analysis will be carried through by assuming
mean values of the downwash angle and flow velocity over the tail surfaces.




The following approximete formulas will be derived:
(a) 2, =2, - FAG

(b) M, = Mo - X FAG
(c) Zq = zqo - FAK

(a) Mq - Mqo - x PAK

Here F, G, and K denote the expressions

2
F -_Ltl_tz_ ) l]Z]

1+ 2/ht

[11)

G =1 -37a% L, [13]

1
K= x, - 20ya%n [14]

where At is the effective area of the tail surfaces,

is the distance (nondimensional.zed) between the center of gravity
end the center of pressure on the tail,

¢ 1s Weinig's correction factor, referrcd to as t in Reference 21,
for small aspect ratio

¢ 1is the wake factor, correcting for the dift.-ence between the mean
" dynamic pressure at the tall surface and ‘he dynamic pressure
in free stream,

y 1is the ratio of the mean downwash angle at the tail “o the downwash
angle at the center of body lift,

A 1is the length-diameter ratic for the body, and
8, is the effective aspect ratio of tail fin.

The bare-hull derivatives 2 ., M_ ., Z,.,, M, can either be taken from expe.’-
ment or from Laitone's or Albring's formulas, [4) and [5]. This will be dis-

cussed in the following sections in which the Equations [11] are derived.

EFFECTIVE ANGLE OF ATTACK AT THE TAIL

Weinig's theory'' shows that for small angles of attack the down-
wash angle for a surface of small aspect ratio also approaches the value given
by lifting-1line theory
yC

LO
ma, (15]

where CLo is the 1ift coefficient for the 1ift on the body based on its
effective area as an airfoil,

wa
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a, 1s the elfective aspect ratlo of the body, and
7y is the ratic of the mean angle of downwash at the tail to the angle
at the center of lift,
o Ao s the effective area of the bocy as an airfoil nond! mensionalized 1n
terms of the body length, we have CLO Lwo a/%b. Furthermore, by definition,
a, = 1/A_22, Substituting these values into {15] gives

¢-7A2LH° a/m (16])
Hence, from [10] and {16] we obtain

B=aG [17)
wvhere

6 =1 - z7A%L, (18]

The ratio 7y at first increases with distance downstream from a value
0f unicy at the center ¢f 1ift, reaches a maximum, and then decreases asymp-
totically. Z=xperimental and thecretical investlgations are needed tc define
the variaticn ¢f y with body form and position relative to the body.

FORCT ON & TAIL SURFACE i

According to lifting-line theory, assuming elliptic lcad distribu-

ticn, the 1ift coefficlent for an isolated’wing surface of aspect ratio a at

an angle of attack B !s
cL.__?-!.L (19)
1+ 2/2

For small aspect ratios, this equatlon léads to results which are
ccnsiderably in error. The application of Weini g‘s" correction factor : 3
herein "efcrred to as : , to Equation [19] gives improved zgreement with
experiment.'' Fora s O Weinig's formula becomes

¢ - (1 + a/2) tanh (2/a) (20]
1 + tanh (2/2)

A graph of : against aspect ratio is given in Figure 1.

If such a2 wing 1s attached to a hull, however, measurements show
that the loading 1s somewhat reduced near the hull but that additional 1if¢
is induced on the portions of the hull adjoining the wing. Furthermore,
tacause at least part of the surface will be within the boundary layer of
the jull, there will occur a ncnuniform reduction in the velocity over the
surface,

-t
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cussed by Wieselsberger.

«~ 0.6

0.4

0.2

o | 2 3 4 S
Qe

Figure 1 - Limit of : (Ratio of Lift Coefficient According
to Weinig Theory to'Lift Coefficient According to Lifting
Line Theory) as Angle of Attack Approaches Zero,
Plotted as a Function of Aspect Ratlo

It will be assumed that the effect of the boundary-layer flow over
the tail surface can be expressed by the application of another correction
faqtor :z to [19], to account for a mean reduction in incident flow. The
deviation from elliptic load distribution, due both to the transverse velocity
gradients in the boundary layer and to the image effects in the hull, may
also modify Equation [19], but it is not considered worthwhile to attempt to
correct for this effect in the present approximate theory.

The additionai 1ift on a hull adjacent to a lifting surface is dis-
2% His results have been applied by Fehlner?' to
obtain approximate formulas for the effective span and effective aspect ratio
of an isolated wing having the same 1ift and induced drag as the combinatior
of intersecting wing and hull. The formulas are

by, = b(1 "E;) , [21]
'at-(a+2)[1 -ﬁ;]-z [22)

-
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where b and b, are the actual (wing tip to body axis) and effective semi-spans,

R 1is the hull radius, which Multhopp®? recommended be taken
at'theli/u,chord point when the radius varies along the
root of the wing, and ‘ T

a and a, are the actual (including intersected area of:body) and effec-
tive aspect ratlos. C

The effective area of the wing 1s then given by A, = Ubtz/at.

With the aforementioned corrections, [19] becomes

Cie = FB [531
where -
b o
F ..__:!_:2_ (24)
1+ 2/ht

Let th be the drag coefficient of the tail surface, based on its
projected area. Then, for small angles, the (nondimensionalized) normal com-
sonent of the force on the tall may be written as

Zt Lo A:(th +Bth) 2 = A:B(F + CDC) [25]

fronm (23], In general, Cpe 1S negligidble n ccaparison with P. Hence, sub-
stituting for B frem [17] and differentiating (23] with respect to a gives

2. = - PAG (26])
'since, by symmetry,

SF , 4G _ ,

da da

whena = 0,

THE STATIC NORMAL-FORCE DERIVATIVE, Z

The superposition of the hull and tall-surface contributions to Zw
‘mmedlately gives Eguation [11a].

It should be noted that a theoretical method of estimating Zwo is
not yet available. Laitone's formula, (4], Zwo = - 2A, only expresses Zwo
in terms of another unknown. Hence, it is recommended that Johnson's empiri-
cal formula,'’ based on tests of a large series of bodies, be used:

Zyo = - (0.234 m*™+ D) [27]




13

THE STATIC-MOMENT DERIVATIVE, M,

The moment about ti center of gravity of the force on the tail
surface is My = x,Z,, and hence, ‘from [26) "

Mae = X¢FALC - (28]
For the complete assembly, then
My = Mo = XcFAC
in accordance with Equation [11b].

Here Mwo may be estimated from Laitone's Equation [4b] or from
Johnson's empirical formula'®

M, = 0.87 (k, = k Jm [29)

THE ROTARY NORMAL-FORCE DERIVATIVE, Zq

Consider a body of revolution, without tail surfaces, moving in a
circular path at a steady nondimensional angular velocity, q, with zero angle
of attack at the center of gravity. It was seen, in the discussion following
Equation [3], that the inertia of the fluid contributes a term kim to the
value of Zq. Also, by the analogy between a straight body in curved flow
and a curved model in straight flow, it might be expected that the body would
experience a 1ift force, like a cambered airfoil at zero angie of attack.

In the following section, after a consideration of Gourjienko's measurements
on a curved model of an airship hull?® and rotating arm measurements at the
Stevens Institute of Technology on a torpedo model without fins,2* the mean
value -0.10 m 1s taken as the contribution due to this effect. Thus the
rotary derivative for the bare hull will be taken as

20" * (0.10 = k )m [30]

It will be supposed that the part of this force additional to the inertia
effect is of the same nature as that acting on a straight body at an angle of
attack in uniform flow and hence, the effects of the resulting downwash will
be included in the calculation of the tail-surface force due to rotation.

The contribution of the. tail surfaces to Z_ will now be considered.
The angular velocity q imparts a mean normal velocity W = gx, to the surface;
or, since all quantities are nondimensionalized, the angle of attack on the
tail surface due to the angular velocity is a= Qx, . Also, corresponding to
the normal force 0.10 mq, there is a downwash angle at the tail surface,
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analcgeus to [1€],
e 0.10 ,,2
€ '—n—-')’)\ mq A B [31]
dence, the effective angle of atfack on the tzll surface is .

B = gk l32].

where
K= x, -2:%ya%n [33]

Tr.en, from [25]), aga'n neglecting the drag of the tail surface,

Z, = BFA, = - QFAK

and hence,

Zqp = = FALK [3u]
since, by symmetry,

dF _ dK

a-as-d—a-. 0

when a = C, :
The resultant value for the body with tall surfaces !{s ncw seen %o
te in acecrdance with [1ic].

THE ROTARY-MOMENT DERIVATIVE, Mq

The moment about the center of gravity of the force on the tail
surface s Mt = tht and hence, from (34],

M. = - X, FAK (35]

Gt

For the complete assembly, then

Mq = Mqo - xtFAtK

‘n accordance with [11d].

COMPARISCN WITH EXPERIMENT

In order to evaluate the procedures indicated in tne preceding text,
two bodies of revolution of TMB Series 58 were subjected to further tests to
determine the dynamic stability characteristics. This section describes
these tests and compares the values thus obtained with values predicted by

* the various formulas.

S S .
ot Y ee e *lem e camv——
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DESCRIPTION OF MODELS, APPARATUS, AND TEST PROCEDURE

Series 58 Models 4i6k4 and 4166 (References 18, 25 and 26) are 9-
foot models of laminated mahogany. They were cut off a short-distance forward
of the stern and a reinforced white-metal tail-cone—stabilizer assembly was
substituted. These models are shown in Figure 2. They were fitted so that
they could be mounted at the center of buoyancy for static-force and moment
measurements or at points 6 3/16 in. ahead or 7 3/16 in. aft of the center of
buoyancy for testing on the underwater-body oscillator. Geometrical charac-
teristics of the models are summarized in the following table.

TABLE 1
Characteristics of Models U164 and 4166

Model | A ‘m Cp T r X m Cs A, a,

4164 [ 7] 0.40] 0.55 |0.50 {0.10 |0.430 | .0176 | .695|.00414 4,93 | .56u
4166 | 7] 0.407 0.70 [0.50 [0.10 |0.478 | .0224 | .810].00602 |3.39 | .513

X

In Table 1 A 1s the length-diameter ratio of the body,

is the axial distance of the maximum section, in body lengths from
bow,

is the prismatic coefficient,
is the nose-radius coefficient,2¢
is the tail-radius coefficient,?*

is the axial distance of the center of buoyancy, in body lengths
from bow,

m is the nondimensional mass of the displaced fluid,

C_ is the surface-area coefficient, defined as the ratio of the surface
area of the body to circumferential area of a circumscribing
cylinder of the same length,

t is the effective plan-form area of the tail fin, nondimensionalized
in terms of the body length,

is the effective aspect ratio of the tail fin, and

x, 1s the distance (nondimensionalized) between the center of gravity
and the center of pressure on the tail.

L ad

o O

ol 3

The static-stability determinations'® were made by means of a
hydraulically operated three-component dynamometer, shown schematically in
Figure 3, at speeds ranging from 3 to 12 knots for angle-of-attack settings
of 0°, 1, X2, £3°, and tue,

Rotary derivatives were determined by analysis of forced oscilla-
tions using the underwater-body oscillator'’ shown in Figure 4. This
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instrument produces torsional vibrations about a vertical axis. It consists
of a driving or forcing mechanism, spring-coupled to a driven or following
mechanism by means of a torsion bar, and a displacement-indicating system.
Sinusoidal displaecement is introduced at the hecad of the oscillator by means
of a scotch yoke of variable stroke. A rheostat on the driving motor permits
variation of the forcing frequency. Oscillator tests are made at two mount-
ing positions, cne usually forward of the center of buoyancy, and the other
aft. PFor tests with ctall fin, the resonant frequency and magnification were
determined in runs at varied input frequency znd amplitude for speeds ranging
from 2 to 5 knots. In order to obviate running at resonance in the presence
of the small damping occurring with the bare hull, the tests without fin were
performed by means of the phase-lag method. The latter tests, performed on
Model 4164 only, were executed at a constant speed of & knots under varied
conditions of input amplitude and frequency.

EXPERIMENTAL RESULTS

“he analysis of rescnance data obtained with the oscillator is de-
scribed in TMB Report C-124.'® The phase-lag method w!ll be described in a
subsequent report. Analysis of the datz gives Mq = 0002 for Model U164,
The data were not sufficiently precise to enable Zq'to be determined for the
"without fins" condigion. Zven M, for this condition is presenced with great
reservation, due to the suspected but yet unevaluated critical influence of

%.0" _{

o205

Toil Areg + 0,338 ft!

I——tz:ns'-—-{

E Modal No. 4166
-
f Toil Area » 0.488 11}

Figure 2 - Models Used in Experimentsl Investigation

‘e
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Figure 3 - Schematic of Three-Component Balance

unsteady lift effects upon the forces on an oscillating body. Indeed, it is
believed that the value of Mq obtained in this tsst, in which the model tra-
velled about three lengths during one complete oscillation, is much closer
to the limiting value for infinite frequency (infinite Strouhal number) than
to the steady (zero frequency) value. The steady value may be greater than
the value obtained by a factor of 2 or 4.2 fThis effect should be consider-
ably less for a body equipped with fins since the chord lengths travelled

‘o
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Figure 4 - Schematic Diagram of Underwater-Body Oscillator

per cycle is about 30 times as great for the fins as for the body, and the
damping of rotary motion is principally due to the fins.

Rotary derlvatives for an elcngated body without fins have been
mesasured by Gourjienko?® cn a curved airsnip model. His data indicate that
for such a body

Zq = - (0.08 - k1) m [36]

where the first term is taken from Gourjienko's measurements in straight {lcw
and the seccnd is added as the contributlion of the centrifugal reaction of
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the fluld for rotary motion.. His measurements also give

Mq = - 0.040m : [37]

In contrast with the above formulas from curved model tests, tests of a bare
torpedo hull in the rotating-arm tank at the Stevens Institute of Technology?*
gave

2, = - (0.133 - k ) m (38]

My = - 0.053m (39)

Both sets of values for M_ and Z_must be considered uncertain, the former
because of the fundamental assumption of the equivalence of curved models in
straight flow to straight models in curved flow, the latter because of the
difficulty of measuring the small lateral force on a bare hull in the presence
o the large inertial centrifugal force on the model due to its rotary motion.
Consequently, in the following comparison we will assume the mean values

Zq = - (0.10 - k1) m (40)

Mq = - 0,045 m [41])

The results obtained from the measurements on Models 4164 and Y166
are given in Table 2. It is interesting to note that the value of Mq for
Model 4164 without fins is about four times the value obtained from the
oscillator experiment. This result is not inconsistent with the previous
discussion in which it was anticipated that because of the unsteady motion
the value of Mq obtained from the oscillator might be low by a factor of
this magnitude.

TABLE 2
Experimental Values of Stability Derivatives

Model 4164 Model 4166
With Fins Without Fins With Fins Without Fins

Zw -.0200 -.0101 -.0210 -.0093
M, .0079 L0132 L0117 .0178
zq -.0106 -.0011# -.0098 -.0014¥
Mg -.0053 -.0008* -,0053 -.0010*

#These values computed from [40] and [41] with k; = 0.036 for a body of length-
diameter Tutio A= 17.




COMPARISON OF 2ARZ RULL FORMULAS WITH EXPERIMENTAL VALUES

In order to apply Laltone's formulas, (4], it is necessary elther
tc assume zn empirical value ?orlzw or to compute it from the cross-sectional
area of the wake at the after end of the body. Both methods will be tried.

An expression for the zrea of the displacement wake of a body of :
revolution at zero angle of attack in terms of its drag, given by Granville,?’

is
CS(H + 1)

A* = ——py— C, [42]
wrere A* is the displacement wake area (determined from the displacement

thickness of the boundary layer) at the after end of the body,
nondimensionalized in terms of the body length,

H s a boundary-layer shape parameter, and
te the drzg coefficient of the body alone, based on the surface

area of the body.
Fermula [L2] nas 2lso been confirmed oy application to the AKRON data.! &
i approximetion for B avt the tall, sultzble for streamlined bodies of revo-
fven in Teferences 28 and 26, !s Hw 1.,6. An averzge value for C,
eynclds number range of the mcdel tests (abous 10‘1 tased on the )

. O
ct O
e
(3]
3

o om

m 1+ ¢ 12 0
(] ;
g |
<!
o)
o

engsn of the model) ‘s C_ = 0.003. Hence, using the vzlues of Cs and A
iven I Table i, we obtain: -
P2
3 +*
Hodgl 4 Laltone (Theor.) r Johnson (Zxp.)
4104 .000608 -.00122 -.0101
4160 .000709 -.00142 -.0093

It !s seen that Laltone's theoretical formula fer Zw for a bare hull, which
has also been given by Allen,3® fails to give even the proper order of megni-
tude. A successful theory for the 1ift on an elongated body of revolution
must consider the vortex system that has been observed in the wake of these
bodies; this was not done by either Laitone’ or Allen.3°

Wwhen experimental values of Zw are assumed, values of the other
derivatives can be computed from Laitone's formulas, [4], and from Albring's
formulas, {5]. The results are compared with the experimental values for the
body without fins in Table 3.

Comparing the experimental values with the results computed by
Laitone's and Albring's formulas, we see that elther formula gives values fcr
Mw agreeing fairly well with the experimental value, while for the rotary
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TABLE 3

Comparison of Experimental and Computed Values of

Stability Derivatives for Body without Fins

Model 4164 Model 4166
Exper. Laitone Albring Exper. | Laitone Albring
Zw -, 010 -.0093
.0132 018 .0133 .0178 L0175 .0198
- . a)-.0025 . . a)-.0029
Zq 0011 .0051 b) 0 ,0014 . 0040 b) 0
Mq -.0008 -.0033 -.0007 -.0010 -.0025 -.0010

derivatives, the Laitone formulas give much poorer agreement. The experimen-
tal value of Z_ 1s almost exactly the mean of the two values computed by the
Albring formulas given in References 3 and U4.

COMPARISON OF FORMULAS FOR BODY WITH FINS WITH EXPERIMENTAL VALUES

Four sets of formulas, Equations [7], (8], (9], and [11], have
been given for the stability derivatives of a body with fins. The predictions
from each of these will now be compared with the experimental results for
Models 4164 and U166. :

In applying Equations [7] and [8)] the experimental values given in
Table 2 will be used for the bare-hull derivatives. The normal-force deriva-
tive Zwt will be computed from the formula, derived from 1ifting-line theory
with a small contribution of the drag of the fins neglected.

ZnatAt
Zy " gy (43]
where a., A, and x, are given in Table 1., The results obtained from Equa-

- tions [7], and the results from Equations (8], with m taken from Table 1,

are given in Table 4.

. In applying Equations [9]) the experimental values of z, and 20
for the body with and without fins, given in Table 2, will be used and Lw
and L, computed from [6]. In using (6], the value of D need not be known
with high accuracy since D 1is small in comparison with Zw or Zwo; D= 00,0010
may be assumed. The results from Equations [9] are alsc given in Table &.

In Equations [11] the values of the bare-hull derivatives will
again be taken from Table 2; At’ m, a., and X, from Table 1. On the basis
of a rough analysis of Harrington's results,’® a value ¥ = 1.64 will be



assumed at a ta!ll surface. Also taking A = 7.0 gives G =1 - 25,6 L, and
K=x, - 2.56 m. From Figure 1 ancé Appendix 3 we obta’n ¢ and ¢ ; then F
from [12]. 6‘. tz. F,.G, and K are given in the following table:

¢, s, F G K
Model 4164 0.96 0,682 2.93 0.770 0.519
Model 4166 0.93 0.665 2.4 0.767 0.456

The results from Equations [11] are given in Table 4,

TABLE U

Comparison of Experimental znd Computed Values of
Stability Derivatives for Body with Fins

Experi- | Zquaticns | Simplest Formulas| Albring New Fcrmulas
mental (7] Equaticns (3] Equations (11]
Model 476U
Z, | -.0200 | -.0286 -.0185 =.0200 -.0154
(assumed)
M, | -0C79 .0028 - .C08 .0106 _.0079
& 3 a)-.0052
l-q -00106 '10115 .-009‘ b).'0057 "0007‘*
Mq -.0053 -,0067 -.0048 -.0014 -.00u43
Model U166
z, | -.0210 -.033 -.0238 -.0210 -.0208
(2ssumed)
M, 017 .0056 .0105 .0132 .0119
- a)-.0069
zq -.0098 .0136 -.0119 b)-. 0040 -.008"
.Mq -.0053 -.0073 -.0060 -.0024 -.00k4

It is seen from Table 4 that Albring's formulas give poor agreement
with experiment for the rotary derivatives. Equations (7] are in poor agree-.
ment for the static derivatives. Both the "simplest formulas" {8] and the
new formuias [11] give good agreement with the experimental values, and elther
set of fcermulas should serve as approximations to the stabillity derivatives.

r,




It should be noted that the values from the new formulas are alge-
braically greater than (and, in one case, equal to) the experimental values
for both models. This éuggeSts that the agreement could -have been improved
by choosing a smaller value for the downwash parameter y and larger values
for the wake factor t}. However, considering the possible errors in the ex-
perimental values themselves, no attempt will be made now to adjust the pre-
sently assumed values. Rather, it is suggested that such an empirical adjust-
ment await the collection of additional reliable data.

SUMMARY

A review of existing theory indicates that a satisfactory theory
for predicting the dynamic-stability derivatives of a body of revolution
without fins has not yet been developed. Instead, the following empirical
formulas appear to be best available:

2, = - (0.23 '+ D) (27]
Myo = 0.87 (k, - k ) m (29]
Zgo = = (010 - k ) m (40]
Mo = - 0.045 m B (41]

When the body is equipped with tail fins adequate to glve it dyngmic
stability, the simplest set of prediction formulas {8], which are essentially
those that have long been used by airship designers, apnears to be in good
agreement with experiment. These formulas are:

(a) 2, =2,

1
b = VA
(¢) quizw
3
(d) Mq =7 2,

These formulas are convenient for many applications, such as are illustrated
in Appendices 1 and 2. Because of the crudity of the assumptions upon which
they are based, however, it is believed that the agreement of the predictions
from Equations [8) with experiment is fortuitous. It is believed that for a
model equipped with smaller fins, or with fins of lower aspect ratio than

was considered here, so that interference effects between body and fins would
become much more severe, the predictions would not be in good agreement with
experiment.
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The predicticns from fcrmulas [11] also appear to be in good agree-
ment with experiment. In the.derivation of thece formules it was attempted
to take into account the interference between ‘the imll and the tail. These
formulas are: B

(a) 2, =2, - FAG

(b) M, = M, - x.FAG
(1]
(¢) 2o = 25, - FAK
(d) Mq = Mqo - xtFAtK
where o
w
~ 12 [-‘2]
1 + 2/at
G=1 -2y Lo (13]
" 0.10 2
Kex, - —=—v2*n (14]
and
7 £
Zoo® = (Lo * D) (o]

L ol . W . e
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APPENDIX 1

ANALYSIS OF ERRORS IN ROOTS OF STABILITY EQUATION

In the present section the simplest approximation formulas [8] will
be applied to obtain simple expressions and graphs for the errors in the roots
of the stability equation, (1), due to errors in the values of the stability
derivatives. Since, as was seen in Table 4, the formulas [8) give results
in very good agreement with experiment for bodies of revolution with tail
surfaces, it should be possible to determine at least the order of magnitude
of these errors by the use of these formulas.

Inserting the values given in Equations (2], and the approximations
k's= k, = 1, Equation [1]) may >e written

2.2,2 2 _
Um®c®e* - 2m(c z, t Mq)o-+ M, - Mw(m + Zq) 0 (ul]

Mq
where ¢ = VI?m is the radius of gyration about a transverse axis. The follow-
ing expressions for error rates can now be obtained by differentlating [Ul]:

(s) g7 = (2nc%o - w,)/a,

[45]

(d) -g—,:; - (2mo - 2,)/,

where
) (46]

I’ a - 2 -
A‘ en(lme€e - ¢ Zw Mq

If now the approximate relations [8] are assumed and we put
us= - Zw/h. we obtain

M, = ml-u+2)/2

Zy=-m u/2 (47}

My = -mufd

and also Equation [44] becomes

8c202 + u(1 + U4c?)o+ 2(u -1) =0



whence

Zy, 2(1 - Uc2¢2?) S (48]

T (1 4+ 4c2)o+ 2

Equations [47] and (48] enable the derivatives of a, given by {45 ], <.
to be written explicitly as functions of o. We obtain

(a) 2, '3‘2" = - (1 - bc2e?)(1 + be?o)?/a,
w

(b) M, -g% = {1+ (1 + Uc2)o+ Uc’azlz/da

(49]
(¢) Zq -nglq' = - (1 - Uc2e®){V + (1 + Ucz)o+ucaazl/42

() ¥, FF = - (0 - Uc2e?)(1 +a)/a,

£

wherse

4, = {2+ (1 + Uc?)o]{? + 4c2 + 16¢c%e + 4c?(1 + Uc?)o?] (50]

The error rates ‘n Zguztions [49) are grapned against ¢ in Figure 5
fc> the czse 22 = 0,05, since this !s zpproximately the value for mcst cases
3f practical interest. It is seen that the stabllity index ¢ !s mc3t sensl-
tive IC percentage cnanges in Zw fer a2 very statie body, !n I'g” for a very
unstatle becdy. SFor a body

.-.

? neutral stabllity, (o= 0), 0 is equally sens’-
tive 0 percentage changes in all the stability derivatives, 1. e.,

(2]

. -2 P2 = -u B o {51
MW OMW “q Eﬂ; 7 £91)
“ne iatter value may also be assumed to give the order of magnitude of the
errcr rates for nearly neutrally stable bodles. Tnus, for such a bedy, a
sercentage error of 10 gercent in cne of the stability derivatives would
result in an errcrdos= 0.10x0.477 = 0.042.
For 2 body cf neutral statlc stadblility, i.e., when Mw = 0, it is
seern from Ejquaticn i45b) ;.ba.Oc/OMw = 0, s0 that o s insens’tive to small
crznges in Mw
A4S an application cf Figure 5, let us find the change in o due to T e
%2 change in the effective area of tall surface At' assuming that the effec-
tive szspect ratio &, !s held constant. We have
de do _‘j&+ .24

deo W -1
ensmes B - - = > -
cz.ﬂ.n g“;w cﬁ\t aMw cAt aaq cAt EMq

(52]

>O-
(44 Qz
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Figure 5 - Rates of Change in Stabllity Index Due to Percentage
Changes in Stability Derivatives and Area

But from [8) and [43], in accordance with present approximations,

Z e .[53]
Z = 2 -
LA L 1+ 2/a,
and
s R e W A
'Z';ﬂ: 'Z'; t -Mq-Qt X,



n
(e 3]

1 d*‘%_ 1 .dzw‘ zw 1

Mw.dAt‘_ Z, f.Zm aky Z; ¥ om At,
Then [52] gives

de_ 8¢ [-X4
hoary (Zwbz—w)+ (zq a..q) (an )+z +2m(°% ) [54)

where, from (48]
) 2 Ua2q2

T Ty 55)

2yt eM M- 21+ UeP)o + Ue2e?

Since all the terms in parentheses in [54] are given in terms of ¢ either by
Equations {49] or by Figure 5, then A:‘éEL i{s also a functicn of ¢. Its
grapr. is included in Figure 5. The rate of variation of ¢ with a percentage
change in tall-surface zrea !s seen o be about four times the average cf the
rates of variacticn of the cther guintitles graphed in Figure 5. For nearly
neutraily 3ta :l scdles we have

L) 00 = - 7 - r
A:F;t— 1 .Cf [501
four times the vaiue in EZquation |31]. Thus s 10 percent increase !n area

ef tall surface would reduce o oy appraximscely 0.17.

As another !llustration, lst us est’mate the effect on ¢ due to the
differences in Table U between the experimental values of the staillity deri-
vatives and the values computed from the new formulas, Equations {11], for
Model 4166, Thne va..ie of ¢ computed from Equations {1) and [2] (assuming
K! = k = 1) using the experimental daza for Model 4166 is ¢ = 0.122. Hence,
from Figu e 5,

z -52- s - 0.37% 82 . g.u72
w uw 2 %35{
~ 0 A u ! 00 2 e .uu
ququ 0.412 “q?'ﬁa 0 9
Also, from Table U,
4z .|
¥ s - 0.010 —::"—-- 0.017
W W
a2 aAM_
-Tfl" - 0.i73 — - 0.170

q q



Hence,

Z 4N AZ 4aM
(-X 4 kv 8¢ "9, 8¢ " g
w 8z, Womw R, * %0z, 77, o, T,

= ,0033 + .0080 + .0712 + .0764 = 0.159

If we had used the less exact relations [51], assuming the body to be of
approximately neutral stability, we would have obtained

40= 0.117 (0.010 + 0.017 + 0.173 + 0.170) = 0.154

The resulting estimated value of ¢ 15 then o = 0.122 + 0.159 = 0.281



30
APPENDIX 2

SIZE OF STABILIZERS FOR A PRESCRIBED ¢

As a second application the formulas for the stabiiity derivatives <
will be applied to a practical design problem, to estimate the size of the
stabilizing surfaces needed in order to attain a prescribed value of the .
stabllity index o.

The tail surface area will first be computed on the basis of the
simplest approximation formulas {8]. In keeping with the spirit of this
approximation, the 1ift force on the tail will be assumed to be given by [19],
uncorrected for the boundary-layer and downwash effects of the hull. Then,
from (8] and [43]

le

ZﬂAt

z .z B o eeee— [57]
w we 1+ 2/'at

Hence, from (48],
2mA 2a(1 - 4e202)

t— - 58]
1+ 2/a (1 4 4c2)o+ 2

when ¢ is prescribed, the right member of Zquaticu L58j 's given,

Dencting it by c‘, putting
4p 2

A, = —— (591
t a,

and substituting for a, and b, from [21] and |22] into [5C], we cbrain
x(b? - R?) = C (a + 2) [60]

This last equation can be used to determine the aspect ratic a when the semi-
span b i{s given, or vice-vers:

We can alsc obtain an express‘cn for A by substituting the new
formulas {17] for the stability derivatives into the stability equation [LL]. Toes
The result is '

Um2c3g2? - 2m°(°2zwo ) +Z M - M (m+ Zqo) Of

wo qo [61]
2mo(c?G + x,K) - GM, - xtKZwo * x.G(m+ 200) + KM,

FA, = -
q0
When the bare-hull stability derivatives and the desired ¢ are prescribed,
the right member of Equation [61) is given. Denoting it by C,, and substi-
tuting for F from {12], Equation [61] becomes

2mg ¢, A = C (1 +%;) 162]



n

Hence, substituting for a,, b,, and A, from (21}, [22) and [59] into [61],
we obtain :
2 _p2y . a+ h

8¢ (b* - R*) = C, = [63]
But t‘ is given as a function of a by Equation [20] or by Figure 1, and tz
1s given as a function of b in Appendix 3 (Equation {73)). Hence, Equation
[63] can be used to determine a when b is given, or vice-versa.

As an example, consider Model 4164 with ¢ = -0.25 prescribed.

This value of ¢ corresponds to the experimental values in Table 2, when it is
computed from Equation [Y4] with ¢2 = 0.05. In order to determine C1 and C2
we need the values of nm, X¢o Zwo, Mwo' zqo' Mqo' G, and K. These are given
in Tables 1-and 2, and in the tabulation preceding Table 4. Substituting
these values for Model 4164 in Equations {58) and [61], we obtain

C‘ = 0.0205, Cz = 0.0148

Now suppose that the stabilizers are situated at the very end of
the body (R = 0) and that an aspect ratis Y 4,93 is prescribed. We then
obtain from [60]

C.(a+2) -
b =) —t—g7— = 0.0752
To apply [63], we first read t‘ = 0.96 from Figure 1. Also, from [73], we

have

¢, = 0.90 (1 - —-7°'°;-2ﬁ)
Hence, [63] becomes

b2 - 0.01726 b - 0.00473 = 0

whose solution is b = 0.0779. The corresponding tail areas, computed from
[59], are as fcllows:

Actual tail area 0.00414
Computed from "simple" fcrmulas 0.00459
Computed from new formulas 0.00492

As another example, consider Model 4166 with ¢ = 0.122, correspond-
ing to the experimental values in Table 2. Substituting the values from
Tables 1 and 2, and G and K from the tabulation preceding Table 4 into
Equations {58) and [61], we obtaln

C‘ = 0.0208, Ca = 0.0168

Now suppose, in contrast to the previous example, that b = 1/14 is prescribed,
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and that R = 0, as before., We then obtain, from [60],
e ”
e s SmE o, 4,17

To apply [63] we first obtain ¢, - 0.665 from [73]. Equation (53] may now
be solved by successive approximations. Assume C‘ = 0.95; then, from Equa-
tion [63] we obtain, as a first approximation to a
8x¢ ¢ b2
g =——32— . 2.2.8
2
The corrected value for t‘ corresponding to this value of a is t‘ = 0.91.
The second approximation to a is then a = 2.62, to which corresponds g = 0.90.
We obtain, finally, a = 2.,57. The corresponding tail areas, computed from

(59], are as follows:

Actual tall area 0.00602
Computed from "simple" formulas 0.00490
Computed from new formulas 0.007%4

Secause of the possibllity of errors in tne experimental values,
an absolute evaluation of the validity of these area formulas cannot be
tased on the foregoing ccmparisons.
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APPENDIX 3

DETERMINATION OF WAKE FACTOR t;

It will be convenient to employ dimensional nomer:lature in the
present section, Let U be the free-stream velocity, and at first assume
that this is also the velocity Jjust outside the boundary layer in the neigh-
borhood of the tail surface. Let u be the longitudinal component of the
velocity at a distance y from tae body. Then, assuming rectangular loading
on the tail fin, the wake correction factor ta it

¢, = %.I:' (‘ﬁ-)a dy [64]

where ba is the distance of the tip of the tail fin from the body.
It will be supposed that bo is greater than the thickness of the
boundary layer at the tail, so that we may write

=0 - 165]
and
o g0 -pa 166)

where 8* is the displacement thickness and 6 the momentum thickness of the
boundary layer at the tail. Then

u b u’
0040 = b, -["p) oy
whence, from [S4],

. _6* +e
§, =1 5 (67)
In terms of the boundary layer shape parameter H = §*/9, Equation [67]
becomes

:2-1-5';-(11“) (68]

According to Granville and Lyon,2%:2' an approximate value for 8/b, at the
tail is given by

00 (H-1)(H+3),4d,%,., 6
%) " ey, By O 169]

where d is the diameter of the body. Hence

6, =1 - Qﬁégg Y - 1)(H + 3)ACC, 170]



34

Equaticn {70) has been derived on the assumption that the velocity
lust outside the bcoundzry layer !s equzl to the free-stream véiocity. Pressure
distributicn data ¢cn bodies of revelution, however, indicate that the veloctty
Just cutside the boundary layer at the tail is about 0.9U. When the fin ex-
tends well teyond the boundary layver, the mean potential-flow velocity over
the fin will be somewhat larger than 0.9U. An average value of 0.95U will
be assumed here, sc that the wake factor C; beccmes

¢, = 0.90 (1 9,;-@%; Vi -+ 30ace, ) (7]

If also the average value H = 1.6 is assumed, [71) becomes

d
¢ = 0.90 1 - VAT ) [72)
Tris can also te expressed in our customary dimensicnless notation, as
~©®
1 VR Y]

/=52 ) (73]

s, = 0.95(1 -5

(2

For Mcdele Y164 and 4166, A= 7, c‘/‘oo = Z, and the values of C_
H 1. Assuming C. = 0.003, we cbtain the fclliowing values

Model 4164, ta = 0.582
Model 4166, { = 0.665

te
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